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Article Summary

Article focus

e Although use of structured electronic databases is widespread, a substantial amount
of clinical data used in research predates this.

e There is a paucity of literature on error rates in such clinical datasets used in
research.

o We explored the reliability of manually transcribed data across different pathology
fields in a prostate cancer database and also measured error rates attributable to the

source data.

Key messages

e Whilst overall rate of error for manually entered data can be low, individual fields
may be variably prone to error, especially those involving descriptive text or
requiring an element of interpretation.

e Computerised systems can be used to check clinical source data for error.

o The use of electronic data feeds retrospectively can replace manually collected data

fields in some cases to improve overall accuracy.

Strengths and limitations of this study

e Qur study design provides a realistic representation of a small to moderate sized
oncology database used for research purposes.

e We checked the integrity of one aspect of our source data.

e Our study was limited by its use of a single spreadsheet from a single series of

patients.
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o As we only examined pathology fields covered by electronic import, the findings

were not representative of the entire dataset.
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15 ABSTRACT

Objective: Data errors are a well-documented part of clinical datasets as is their

20 potential to confound downstream analysis. In this study we explore the reliability of
22 manually transcribed data across different pathology fields in a prostate cancer database

24 and also measure error rates attributable to the source data.

29 Design: Descriptive study

33 Setting: Specialist urology service at a single centre in metropolitan Victoria
Participants: Between 2004 and 2011, 1471 patients underwent radical prostatectomy
40 at our institution. In a large proportion of these cases, clinicopathological variables were
42 recorded by manual data-entry. In 2011, we obtained electronic versions of the same

44 printed pathology reports for our cohort. The data were electronically imported in

parallel to any existing manual entry record enabling direct comparison between them.

51 Outcome measures: Error rates of manually entered data compared with electronically

53 imported data across clinicopathological fields.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



©CoO~NOUTA,WNPE

BMJ Open

Results: 421 patients had at least 10 comparable pathology fields between the electronic
import and manual records and were selected for study. 320 patients had concordant
data between manually entered and electronically populated fields in a median of 12
pathology fields (range 10-13), indicating an outright accuracy in manually entered
pathology data in 76% of patients. Across all fields, the error rate was 2.8% whilst
individual field error ranges from 0.5-6.4%. Fields in text formats were significantly
more error-prone than those with direct measurements or involving numerical figures
(p<0.001). 971 cases were available for review of error within the source data, with

figures of 0.1%-0.9%.

Conclusion: While the overall rate of error was low in manually entered data,
individual pathology fields were variably prone to error. High quality pathology data
can be obtained for both prospective and retrospective parts of our data repository and

the electronic checking of source pathology data for error is feasible.
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BACKGROUND AND SIGNIFICANCE

The majority of clinical research publications are based on the analysis of prospectively
collected, clinical databases. In addition, patient centred databases are increasingly
important in translational research efforts, as appropriately annotated tissue banks are
the foundation for global multi-institutional collaborative efforts in genetic and
epigenetic screening of various diseases'. Yet despite the stringent quality controls
placed on the vast amounts of research data derived from these studies and the acute
awareness of the need to control data quality”>, the inherent accuracy of original clinical

datasets is one area that receives relatively little attention.

Data errors are common in clinical datasets™®, with some cancer databases recording
error rates as high as almost 27% in some fields ’. Such errors have the potential to
adversely affect data analysis and interpretation, and can lead to erroneous conclusions®.
Methods to first identify then correct errors in these datasets would be immensely

valuable in the setting of the large-scale genomics projects being performed.

Two types of errors are described in the literature: one of omission, and one of
erroneous value. Although it is sometimes argued that missing values carry greater
impact due to their greater prevalence’, which may be up to 55% in cancer surgery
databases'®, these errors are more easily detected with judicious computer queries and
corrected with retrospective data collection. On the contrary, once erroneous values
permeate a dataset, their effects can cascade in unpredictable ways. Errors in high
impact fields have been shown to adversely affect the interpretation of statistical

analyses, even if the errors are at low prevalence''. Whilst it is well known that
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structured data entry improves the accuracy of manual documentation'?, much of the
clinical data of high value to researchers predates any effective informatics solutions
aimed at data quality that might exist today. Instead, manual retrospective transcription
of data from clinical records into relatively unstructured spreadsheets constitutes the
data entry method for many clinical audits that subsequently serve research purposes.
These datasets may have even transitioned to more carefully constructed data entry
interfaces, as might occur in conditions such as prostate cancer where long follow up
times of over ten years are necessary for study of oncological outcomes'?. In such cases,
the provenance of the data collected with earlier means may not be accounted for with

subsequent analysis.

Studies involving large cancer datasets rarely report error rates or their management,
and it is difficult to assess the impact that these may have on the outcomes reportedM.
Given the considerable effort that generally goes towards the collection of data for a
large clinical database, it is unsurprising that surplus resources are usually unavailable
to place towards the check of data accuracy. Although larger numbers in databases may
be used to counter the problem of errors, the combination of datasets, particularly with

different fields would serve only to magnify error rates.

Knowledge of errors in manually collected data could give insight into how these may
be accounted for in subsequent analysis. In cancer databases, pathology data are of
particular importance as they are relied upon to build cohorts of clinical relevance in
research. Often there are multiple fields that give equivalent indications of underlying

biology and any one could be analysed to similar effect. For example, both the
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percentage involvement of tumour or its measured size may serve as parameters of
cancer burden. It is unlikely that different types of data would have equivalent
vulnerability to error, and knowledge of the fields or types of fields that might be more
error-prone with manual data entry could help researchers judiciously select fields for
analysis based on greater accuracy. It might also aid informaticians to focus on error
prevention in fields that carry particular importance in clinical and research settings. In
addition, it is important to measure the baseline level of error inherent within the
pathology reports themselves, the data source, as no degree of accuracy in manual
transcription or even automated processes can result in a lower error rate without

amendment of the original report.

In this article we explored the reliability of manually transcribed pathology data across
different fields in a large contemporary prostate cancer database. Initially housed as a
Microsoft Excel spreadsheet, the database has evolved to become server based with a
web-based interface. We have established automated electronic datafeeds from our
pathology service provider to reduce the manual human data entry component in the
pathology data, and we have used these to prospectively and retrospectively populate
data fields. We compared overlapping data from the electronic feeds and previously
manually entered data, whereby we could gauge the accuracy of pathology details in a
subset of our patients. In this way, we could determine the error involved in manual data
entry in different fields across patients with relative ease. In addition, we explored error

that might be attributable to the source data.
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PATIENT AND METHODS

Database Systems and Data Linking

Between 2004 and 2011, 1471 patients underwent radical prostatectomy across our
institutions. Variables including demographics, pre-operative PSA, pathological
Gleason score and stage, and other pathological data relating to the prostatectomy
specimens were manually entered in a non-relational database (Microsoft Excel
spreadsheet) for the first 853 of these cases with 57 fields per patient (2004-2008).
Although most data collection was primarily prospectively performed, pathology data
was obtained retrospectively once printed specimen pathology reports became available,
or missing data was found on later review. For every patient, printed pathology reports
were consulted and data manually transcribed into the spreadsheet. Each of the reports
were issued by a single pathology group and consisted of one to two pages of prose.
Since 2006, the reports have been accompanied by a separate page with a 'synoptic'
report. This synoptic report contained the pathology data in a structured format with
fields of interest listed on a single page enabling greater ease of interpretation over the
traditional reports in prose. Several different junior medical staff performed manual data
entry at sporadic times throughout. In 2010 our institution moved all data to Caisis 5.0,
a web-based relational database system developed at the Memorial Sloan Kettering
Cancer Centre in New York, and ceased manual recording of pathology data from

hardcopy reports.

We subsequently established a data link between our database and the pathology group

whereby electronically encrypted reports were provided in HL7 standard v2.31 format,

a health industry information technology standard. The reports were retrieved using
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client/server software through a TCP/IP link. Custom software was developed in Visual
Basic (Microsoft Visual Studio 2010) that enabled us to parse text or values of interest

from the synoptic reports and automatically populate associated fields in our database

P OO~NOUILAWNPE
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system. (Fig 1). All new pathology data henceforth was imported in this way after
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Fig. 1 Schematic representation of the digital import of pathology data. Structured
‘synoptic’ reports facilitated digital recognition of relevant pathology fields. (A)
Demographics data was used to link reports to individual patients in the database and
(B) individual data were then extracted from the report and directed to populate relevant
fields in the main database.
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Analysis of Error in Manual Data Entry

The digitally imported data were placed parallel to any existing manual entry records
and following institutional review board approval, we were able to directly compare
between digitally imported data and manual entry data for 752 patients where records
from the two data entry methods co-existed. We assumed that any mismatch in the
fields within the manual entry and digital import was due to human error in the data
entry, as data were copied from printed versions of these same reports in the first
instance. The importing software had been extensively tested and errors would be
systematic within each field rather than transcriptional in nature. We excluded from
analysis specimen pathology fields with fewer than 200 comparable entries in order to
detect at least a 0.5% error rate. 421 patients had at least 10 completed pathology fields
in both manual entry and electronic import records and were thus selected for study.
This would allow us to detect the error rate across a patient’s fields and also minimise
individual patient factors in explaining error rates in different fields. Within each
pathology field, we linked records based on unique identifiers and electronically
compared them using custom prepared software (Visual Basic, Microsoft Visual Studio
2010). We identified and counted any mismatches and then compared across all fields
for each patient to determine the number of patients affected by one or more errors

across the cohort (Fig. 2).
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25 parallel to a manually entered dataset. (A) Records were linked using unique patient
26 identifiers, and (B) pathology fields were individually compared. Concordant data were
27 flagged for merging in order to eliminate duplicate data (C) Mismatches were used to
28 identify errors in the manual entry dataset. (D) We compared across all pathology fields
gg for individual patients.
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36 Analysis of Error within Pathology Reports
37
38 In order to gain insight into the error inherent within the original pathology reports from
39
22 which we sourced data, we measured the concordance between pathological stage and
42 . . .
43 one of the descriptors that lead to stage determination, namely the extraprostatic
44
45 extension variable. An error was detected in cases of incongruity where extraprostatic
46
47 extension was present but the staging was T2, or extraprostatic extension was absent but
48
gg the staging was T3. We identified and excluded the small number of cases of stage T3b
22 disease where seminal vesicle invasion was apparent but extraprostatic extension not
53
54 definite, as this would not be considered an error. We examined only the electronically
55
56 imported data read directly from the synoptic reports, so that the effect of manual data
57
58
59
60
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entry was excluded. We identified a total of 971 cases where both pathological stage
and extraprostatic extension fields had both been successfully imported from the
synoptic pathology reports (Table I). Once again using Visual Basic, we generated a
report indicating cases where there was mismatch between pathological stage and
extraprostatic extension status. The original cases in which these mismatches occurred

were all reviewed by a pathologist to confirm the presence of error in the source

material.

Table I

Pathological Stage Number
T2a 131

T2b 4

T2c 543

T3a 225

T3b 68

T4 0

Extraprostatic Extension

Absent 670
Present 302

Total Cases for Comparison 971

Statistical Analysis

Percentage error rates were calculated by dividing the absolute number of errors by the
total number of data points examined overall and in each field. Binomial distribution
was used to calculate 95% confidence intervals for these rates, and Fisher’s Exact Test
applied to 2x2 contingency tables where necessary (PASW Statistics 18.0; IBM,
Chicago, Illinois, 2010). All statistical tests were two-tailed and significance was

assumed at 0<0.05.
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RESULTS

Of the 421 patients selected for this part of the study, 320 had completely concordant
data between manual entry and electronic import methods in a median of 12 pathology
fields (range 10-13), indicating an outright accuracy in 76% of all patients. Seventy one
patients (16.8%) had errors in one field only, whilst 18 (4.3%) had two or more

incorrect fields, and 12 (2.9%) had 3-5 errors.

Analysis of error rate in each individual pathology field yielded rates of error ranging
from 0.5-6.4%. Across all fields, the error rate was 2.8% (Table II). Assuming that
errors in different fields occurred independently of one another, that the fraction of
records where at least one error occurred would be given by 1-(1-p)”, where p is the
overall error rate and # is the number of fields. In this case, 1-(1-0.028)'* = 31%. Since
the proportion of records where error occurred was 24%, the errors appear not to occur

independently across the fields.

Fields involving descriptive parameters appeared more error-prone than those with
direct measurements or involving numerical figures, so we grouped the fields based on
data format. Of the 2658 data points involving numbers (numeric and alphanumeric), 30
(1.1%, 95% CI 0.78-1.6) were erroneous, compared with 116 (4.7%, 95% CI 3.9-5.6) of
the 2490 data points with text (p<0.0001). The five fields that required an element of
interpretation in data entry also appeared more error-prone and again, when data was
pooled, their difference in error rates compared with fields allowing for direct

transcription was significantly greater (5.2% vs 1.3%, p<0.0001).
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Table 11
Pathology Field Variable Data Format Total Data Error  Error Rate

Type Points (%) 95% CI)
Gleason 1 Categorical Numeric 415 2 0.5% (0.06-1.7)
Gleason 2 Categorical Numeric 415 3 0.7% (0.15-2.1)
Gleason score Categorical Numeric 415 1 0.2% (0.01-1.3)
Extraprostatic Extension” Binary Text 421 21 5.0% (3.1-7.5)
Stage Categorical ~ Alphanumeric 421 13 3.1% (1.7-5.2)
Focality Binary Text 421 9 2.1% (1.0-4.0)
Perineural Invasion” Categorical Text 421 27 6.4% (4.3-9.2)
Lymphovascular Categorical Text
Invasion’ 421 27 6.4% (4.3-9.2)
Prostatic Intraepithelial Categorical Text
Neoplasia” 420 27 6.4% (4.3-9.2)
Margins’ Binary Text 386 5 1.3% (0.42-3.0)
Tumour Volume Continuous Numeric 310 4 1.3% (0.35-3.3)
Prostate Dimensions” Continuous Numeric 272 2 0.7% (0.09-2.6)
Prostate Weight Continuous Numeric 410 5 1.2% (0.40-2.8)
All Fields 5148 146 2.8% (2.4-3.3)

* Data required some interpretation on data entry — these were coded numerically
+Each data point was a combination of 3 numbers. Error never occurred in more than one dimension.

In the 971 cases used for the analysis of source data error, six cases were staged T2 but
in fact were positive for extraprostatic extension (6 of 672, 0.9%). On pathologist
review, these cases had indeed been understaged. One case of a T3 prostate cancer
erroneously stated on the synoptic report that extraprostatic extension was not identified
(Table III). This was the sole inconsistency between the original prose pathology report
and its accompanying synoptic report (1 of 971, 0.1%). Although only two variables

have been analysed, these figures suggest a very low rate of baseline error inherent in

the pathology reports.

Table I11

Pathological Stage Matches Mismatches Error Rate % (95% CI)
T2 672 6 0.9% (0.33-1.9)
T3 292 1 0.3% (0.01-1.9)
Total 964 7 0.7% (0.30-1.5)
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DISCUSSION

In a large contemporary radical prostatectomy dataset we have examined pathology data
in a subset of over 400 patients and found the overall error rate due to manual data entry
to be 2.8% across all fields. Individual fields were found to vary in error rates between
0.5% and 6.4%, and those involving descriptive text or requiring an element of
interpretation appeared more vulnerable to error. Almost a quarter of patients had at
least one data error when all pathology fields were considered, as might occur when
multivariable statistical analysis is undertaken. We have also examined the source data
electronically without human influence and established a baseline error rate of less than

1%.

The strengths of our study include a combination of factors that enable a realistic
representation of a small to moderate sized oncology database used for research
purposes. As the data was stored in a simple spreadsheet, not collected for clinical use
and was sourced from primary clinical documents, this context of data entry represents a
common scenario predating modern informatics solutions. We also examined a distinct
set of data fields with varying formats important to clinical oncological research.
Together, these increase the relevance of our findings to cancer datasets in general, and
in particular to data which has provenance in times prior to the introduction of more
sophisticated modes of data entry. In addition, we have checked the integrity of one
aspect of our source data, which is of importance in both clinical and academic settings.
This helps to set a lower limit to the general error rate that can be achieved with

interventions for data integrity imposed beyond initial pathology reporting.
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Our study was limited by its use of a single spreadsheet from a single series of patients.
Although different institutions may use different data systems, the maintenance of
clinical datasets on such spreadsheets is common in the clinical environment. Our
source data was in the form of synoptic reports designed for ease of data transcription,
rather than traditional pathology reports in prose and this may have reduced the true
error rate of such data. Other major limitations were in the study design, whereby we
could not differentiate easily between different types of data entry error despite being
able to infer this to some extent from the format of data. Due to the nature of
spreadsheets, we could not definitely account for row or column shifts in blocks of data
as a source of error, although, on visual inspection of the errors this did not seem to be
the case. As we only examined pathology fields covered by electronic import, the
findings were not representative of the entire dataset, which also includes operative and
perioperative details, and thus the study was not designed to test the effect that these
other factors may have had on error nor was it designed to detect errors in these
important areas. A final limitation was that the size of error in fields containing
continuous data was not measured as we only identified mismatches in the datasets, and

this is required to assess more fully any impact of error in those fields.

Studies of error in clinical datasets are scarce, owing in part to the time and resources
required to conduct these audits. Our overall error rate in manually entered data appears
similar to that of previous studies. In one study occurring over 10 years, Zellner et al
reported an estimated probability of error in two systems at about 2.4% and the
estimated error frequency in a database alone was 2.7%". In this case, less than 10% of

the overall dataset was examined using random sampling. Arndt et al performed a

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 16 of 27



Page 17 of 27

©CoO~NOUTA,WNPE

BMJ Open

17

detailed study of observer rating scores in a multicentre field setting'', whilst Goldberg
et al examined several clinical research databases, with errors ranging from 2.3% to
26.9% detected by the double-entry method in fields relating to timepoints of disease
and tumour recurrence status’. In general, these studies have involved more
sophisticated data entry interfaces that allowed more detailed analysis of the underlying

aetiology of data errors.

In contrast, our study has directly examined most fields in the subset of pathology
variables, of particular importance in oncology research, and removed the effects of
manual transfer of data in the generation of the comparison dataset. We also analysed
error in the source data, as they might exceed those of data entry and render attempts to
decrease downstream error frequency less meaningful. In this case the rate of 0.9% in
mismatch between stage and extraprostatic extension was reassuringly lower than the
overall manual entry dataset error frequency, and was also lower than the generally

cited rate of 1.4% error for prostate pathology16.

Although an analysis of the impact of data errors on outcomes was an area our study
was unable to address, as follow up times were too short in our dataset for meaningful
results, others have demonstrated the variable effects that erroneous data might have on
outcomes such as rates of tumour recurrence and mortality rates’ *. While it is likely that
a low rate of data error will have little effect in univariable analysis, studies involving
many fields and demonstrating a small effect size with borderline significance levels are
intuitively liable to the effect of errors. In these cases, and particularly where accuracy

across a large feature space is essential such as in translational genomics research, it is
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preferable that data errors are accounted for. Some investigators have developed
corrective statistical tools to be used with a specified error rate in source databases in a
particular circumstance®, but such tools are unlikely to become widely applicable
without more reporting of error rates within different types of datasets and analyses of

outcome differences.

The greatest influence on error rates in our own clinical dataset was the transition to
electronic data feeds from clinical sources and the application of software to
retrospectively replace manually entered data. In doing so, we decreased the portion of
patients with manually entered data from 58% (853/1471) to 9% (128/1471), although
for various technical reasons many fields still remain manually inputted amongst the
earlier patients. With advances in technology, it may even be possible to extract data
from even earlier pathology reports, since all reports are typewritten, and maintain a
dataset with virtually no manually entered pathology data. Where such manually entered
data is unavoidable or forms part of a larger dataset, due acknowledgement of the
provenance of data from different parts of that dataset by performing separate analysis
or by employing sensitivity analysis might be considered in research. In addition, the

judicious selection of pathology fields based on liability to error might be used.

The recognition that direct use of clinically attained data leads to better accuracy is not
new. The need to re-key data between clinical sources and database interfaces has long
been acknowledged to be a significant source of human error'’, and the removal of this
aspect of data entry would presumably increase accuracy of clinical datasets overall. In

recent times, the availability of data directly collected in the clinical setting for other
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healthcare activities including medical research has increased. One clinical group in a
peripheral hospital centralised data collection for audit and research purposes via web-
browser based application software and extensively integrated the system in daily use.
In just 12 months, their unit amassed over 3000 near complete patient records and
reported enhanced accuracy due to the demonstration of the immediate clinical value of
high-quality data capture to the users'®. Such integrated record systems have been
shown to have additional clinical benefits'®, whilst data collected as near in time and
space as possible to the point of care is known to improve overall accuracy™. Indeed,
pathologists currently generate pathology reports prospectively as part of the clinical
process, and our use of electronic data feeds from our service provider is an example of
how clinical data can be directly captured for clinical or research use without the need

for manual data entry.

With increasing drive for the widespread implementation of electronic health records?',
comes the opportunity for more electronic data feeds into data repositories from health
services such as those used in the present study, and this effectively diminishes the
reliance on manual data entry. However, as our study demonstrated, even a clinical data
source itself has a pervasive error rate, and there will remain a need for active error
trapping. Furthermore, retrospective replacement of manually entered data may afford
opportunities to examine the errors in manually entered data. Perhaps this work would
allow the development of tools to adequately account for errors in early datasets that no

technology can correct.

CONCLUSION
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We have evaluated a large radical prostatectomy dataset and while the overall rate of
error was low, individual pathology fields were variably prone to error. We have
demonstrated the feasibility of checking source clinical data for error, and the
possibility of attaining high quality data using electronic data feeds for both prospective

and retrospective parts of our data repository.
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Fig. 1 Schematic representation of the digital import of pathology data. Structured ‘synoptic’ reports
facilitated digital recognition of relevant pathology fields. (A) Demographics data was used to link reports to
individual patients in the database and (B) individual data were then extracted from the report and directed

Page 24 of 27



Page 25 of 27 BMJ Open

1

2

3

4

5

6

7 A | o | P | a A | o | P | a

8 Gleason |Path Gleason Path

9 1 [ID Score Stage EPE - 1 |ID Score Stage EPE

10 2 528 |—F2= 8 fs- 528) 72a 0

11 (3] 529 7/3a 1 [&] 529 7/3a 1
| 4 | 530 6/2b 0 2] 530 6/2b 0

12 5 531 8J2c 0 = 531 8J2c 0

13 | 6 532 7]2¢ 0 | 6 | 532 712¢ 0

14 [ 7 533 7]2¢ 0 i [ 7] 533 712¢ 0
8 | 534 7|20 0 g < 534 712b 0

15 9| 535 8]3a 1 9 | 5% 8f3a 1

16 1 10| 536 7]2a 0 1 10| 536 7|2a 0

17 [ 11] 537 9l2¢ 0 |11 537 9l2¢ 0

18 (12 538 8|3a 1 [ 12] 538 8|3a 1
13 539 6/2c 0 13 ] 539 6/2¢ 0

19 14 540 6 2c 0 (14 540 6 2¢ 0

20 [ 15| 541 7/2¢ 0 | 15| 541 7/2¢ 0

21 [ 16| 542 6/2b 0 | 16 | 542 6/2b 0
|17 | 543 7/2b 0 | 17 | 543 7120 0

22 | 18 544 7/2b 0 18 544 7120 0

23 119 545 6/2a 0 119 545 6/2a 0

24 | 20 | 546 8/2c 0 " 1 20 | 546 82c 0

25 [ 21] 547 7|20 : 8 4 S 7=2a | 0
| 22 548 7[3a 1 122 | 548 7/3a 1

26 (23] 549 7 2a 0 (23] 549 7 2a 0

27 | 24 550 7/3a 1 | 24 | 550 7/3a 1

28 | 25| 551 7]2¢ 0 | 25 ] 551 72¢ 0

59 | 26 552 6/3a 1 | 26 | 552 6/3a 1
27 | 553 7/2¢ 0 B 553 72¢ 0

30 28| 554 7/3b 0 | 28 | 554 7/3b 0

31 29 555 62¢ 0 = 29 | 555 6 2c 0

32 | 30| 556| 6/2a [, 56 5561 6 2a 0]
il 557 7/2¢ 0 | 31] 557 7/2¢ 0

33 32 558 7/2¢ 0 32 ] 558 72¢ 0

34 33 | 559 7/3a 1 33| 559 7/3a 1

35 34 560 7/3a 1 34| 560 7/3a 1

36 135 561 7/2b 0 35 561 720 0

37

38 Fig. 2 Schematic representation of the comparison of a dataset imported digitally and in parallel to a

. I
39 manually entered dataset. (A) Records were linked using unique patient identifiers, and (B) pathology fields
40 were individually compared. Concordant data were flagged for merging in order to eliminate duplicate data
(C) Mismatches were used to identify errors in the manual entry dataset. (D) We compared across all

41 pathology fields for individual patients.

42 86x79mm (600 x 600 DPI)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



©CoO~NOUTA,WNPE

BMJ Open

Table I
Pathological Stage Number
T2a 131
T2b 4
T2c 543
T3a 225
T3b 68
T4 0
Extraprostatic Extension
Absent 670
Present 302
Total Cases for Comparison 971
Table IT
Pathology Field Variable Data Format Total Data  Error  Error Rate

Type Points (%) (95% CI)
Gleason 1 Categorical Numeric 415 2 0.5% (0.06-1.7)
Gleason 2 Categorical Numeric 415 3 0.7% (0.15-2.1)
Gleason score Categorical Numeric 415 1 0.2% (0.01-1.3)
Extraprostatic Extension” Binary Text 421 21 5.0% (3.1-7.5)
Stage Categorical Alphanumeric 421 13 3.1% (1.7-5.2)
Focality Binary Text 421 9 2.1% (1.0-4.0)
Perineural Invasion” Categorical Text 421 27 6.4% (4.3-9.2)
Lymphovascular Categorical Text
Invasion 421 27 6.4% (4.3-9.2)
Prostatic Intraepithelial Categorical Text
Neoplasia” 420 27 6.4% (4.3-9.2)
Margins” Binary Text 386 5 1.3% (0.42-3.0)
Tumour Volume Continuous Numeric 310 4 1.3% (0.35-3.3)
Prostate Dimensions” Continuous Numeric 272 2 0.7% (0.09-2.6)
Prostate Weight Continuous Numeric 410 5 1.2% (0.40-2.8)
All Fields 5148 146 2.8% (2.4-3.3)

* Data required some interpretation on data entry — these were coded numerically
+Each data point was a combination of 3 numbers. Error never occurred in more than one dimension.
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Table 111

Pathological Stage Matches Mismatches Error Rate % (95% CI)
T2 672 6 0.9% (0.33-1.9)
10 T3 292 1 0.3% (0.01-1.9)
11 Total 964 7 0.7% (0.30-1.5)
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Article Summary

Article focus

e Although use of structured electronic databases is widespread, a substantial amount
of clinical data used in research predates this.

e There is a paucity of literature on error rates in such clinical datasets used in
research.

o We explored the reliability of manually transcribed data across different pathology
fields in a prostate cancer database and also measured error rates attributable to the

source data.

Key messages

e Whilst overall rate of error for manually entered data can be low, individual fields
may be variably prone to error, especially those involving descriptive text or
requiring an element of interpretation.

e Computerised systems can be used to check clinical source data for error.

o The use of electronic data feeds retrospectively can replace manually collected data

fields in some cases to improve overall accuracy.

Strengths and limitations of this study

e Qur study design provides a realistic representation of a small to moderate sized
oncology database used for research purposes.

e We checked the integrity of one aspect of our source data.

e Our study was limited by its use of a single spreadsheet from a single series of

patients.
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o As we only examined pathology fields covered by electronic import, the findings

were not representative of the entire dataset.

ABSTRACT

Objective: Data errors are a well-documented part of clinical datasets as is their
potential to confound downstream analysis. In this study we explore the reliability of
manually transcribed data across different pathology fields in a prostate cancer database

and also measure error rates attributable to the source data.

Design: Descriptive study

Setting: Specialist urology service at a single centre in metropolitan Victoria in

Australia

Participants: Between 2004 and 2011, 1471 patients underwent radical prostatectomy
at our institution. In a large proportion of these cases, clinicopathological variables were
recorded by manual data-entry. In 2011, we obtained electronic versions of the same
printed pathology reports for our cohort. The data were electronically imported in

parallel to any existing manual entry record enabling direct comparison between them.

Outcome measures: Error rates of manually entered data compared with electronically

imported data across clinicopathological fields.
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Results: 421 patients had at least 10 comparable pathology fields between the electronic
import and manual records and were selected for study. 320 patients had concordant
data between manually entered and electronically populated fields in a median of 12
pathology fields (range 10-13), indicating an outright accuracy in manually entered
pathology data in 76% of patients. Across all fields, the error rate was 2.8% whilst
individual field error ranges from 0.5-6.4%. Fields in text formats were significantly
more error-prone than those with direct measurements or involving numerical figures
(p<0.001). 971 cases were available for review of error within the source data, with

figures of 0.1%-0.9%.

Conclusion: While the overall rate of error was low in manually entered data,
individual pathology fields were variably prone to error. High quality pathology data
can be obtained for both prospective and retrospective parts of our data repository and

the electronic checking of source pathology data for error is feasible.
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BACKGROUND AND SIGNIFICANCE

The majority of clinical research publications are based on the analysis of prospectively
collected, clinical databases. In addition, patient centred databases are increasingly
important in translational research efforts, as appropriately annotated tissue banks are
the foundation for global multi-institutional collaborative efforts in genetic and
epigenetic screening of various diseases'. Yet despite the stringent quality controls
placed on the vast amounts of research data derived from these studies and the acute
awareness of the need to control data quality”>, the inherent accuracy of original clinical

datasets is one area that receives relatively little attention.

Data errors are common in clinical datasets*™®, with some cancer databases recording
error rates as high as almost 27% in some fields ’. Such errors have the potential to
adversely affect data analysis and interpretation, and can lead to erroneous conclusions®.
Methods to first identify then correct errors in these datasets would be immensely

valuable in the setting of the large-scale genomics projects being performed.

Two types of errors are described in the literature: one of omission, and one of
erroneous value. Although it is sometimes argued that missing values carry greater
impact due to their greater prevalence’, which may be up to 55% in cancer surgery
databases'®, these errors are more easily detected with judicious computer queries and
corrected with retrospective data collection. On the contrary, once erroneous values
permeate a dataset, their effects can cascade in unpredictable ways. Errors in high
impact fields have been shown to adversely affect the interpretation of statistical

analyses, even if the errors are at low prevalence''. Whilst it is well known that
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structured data entry improves the accuracy of manual documentation'?, much of the
clinical data of high value to researchers predates any effective informatics solutions
aimed at data quality that might exist today. Instead, manual retrospective transcription
of data from clinical records into relatively unstructured spreadsheets constitutes the
data entry method for many clinical audits that subsequently serve research purposes.
These datasets may have even transitioned to more carefully constructed data entry
interfaces, as might occur in conditions such as prostate cancer where long follow up
times of over ten years are necessary for study of oncological outcomes'”. In such cases,
the provenance of the data collected with earlier means may not be accounted for with

subsequent analysis.

Studies involving large cancer datasets rarely report error rates or their management,
and it is difficult to assess the impact that these may have on the outcomes reportedM.
Given the considerable effort that generally goes towards the collection of data for a
large clinical database, it is unsurprising that surplus resources are usually unavailable
to place towards the check of data accuracy. Although larger numbers in databases may
be used to counter the problem of errors, the combination of datasets, particularly with

different fields would serve only to magnify error rates.

Knowledge of errors in manually collected data could give insight into how these may
be accounted for in subsequent analysis. In cancer databases, pathology data are of
particular importance as they are relied upon to build cohorts of clinical relevance in
research. Often there are multiple fields that give equivalent indications of underlying

biology and any one could be analysed to similar effect. For example, both the
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percentage involvement of tumour or its measured size may serve as parameters of
cancer burden. It is unlikely that different types of data would have equivalent
vulnerability to error, and knowledge of the fields or types of fields that might be more
error-prone with manual data entry could help researchers judiciously select fields for
analysis based on greater accuracy. It might also aid informaticians to focus on error
prevention in fields that carry particular importance in clinical and research settings. In
addition, it is important to measure the baseline level of error inherent within the
pathology reports themselves, the data source, as no degree of accuracy in manual
transcription or even automated processes can result in a lower error rate without

amendment of the original report.

In this article we explored the reliability of manually transcribed pathology data across
different fields in a large contemporary prostate cancer database. Initially housed as a
Microsoft Excel spreadsheet, the database has evolved to become server based with a
web-based interface. We have established automated electronic datafeeds from our
pathology service provider to reduce the manual human data entry component in the
pathology data, and we have used these to prospectively and retrospectively populate
data fields. We compared overlapping data from the electronic feeds and previously
manually entered data, whereby we could gauge the accuracy of pathology details in a
subset of our patients. In this way, we could determine the error involved in manual data
entry in different fields across patients with relative ease. In addition, we explored error

that might be attributable to the source data.
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PATIENT AND METHODS

Database Systems and Data Linking

Between 2004 and 2011, 1471 patients underwent radical prostatectomy across our
institutions. Variables including demographics, pre-operative PSA, pathological
Gleason score and stage, and other pathological data relating to the prostatectomy
specimens were manually entered in a non-relational database (Microsoft Excel
spreadsheet) for the first 853 of these cases with 57 fields per patient (2004-2008).
Although most data collection was primarily prospectively performed, pathology data
was obtained retrospectively once printed specimen pathology reports became available,
or missing data was found on later review. For every patient, printed pathology reports
were consulted and data manually transcribed into the spreadsheet. Each of the reports
were issued by a single pathology group and consisted of one to two pages of prose.
Since 2006, the reports have been accompanied by a separate page with a 'synoptic'
report. This synoptic report contained the pathology data in a structured format with
fields of interest listed on a single page enabling greater ease of interpretation over the
traditional reports in prose. Manual data entry was performed by four surgical residents
with knowledge of prostate cancer pathology and versed in the relevant terminology.

In 2010 our institution moved all data to Caisis 5.0, a web-based relational database
system developed at the Memorial Sloan Kettering Cancer Centre in New York, and

ceased manual recording of pathology data from hardcopy reports.

We subsequently established a data link between our database and the pathology group
whereby electronically encrypted reports were provided in HL7 standard v2.31 format,

a health industry information technology standard. The reports were retrieved using
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client/server software through a TCP/IP link. Custom software was developed in Visual
Basic (Microsoft Visual Studio 2010) that enabled us to parse text or values of interest

from the synoptic reports and automatically populate associated fields in our database
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Fig. 1 Schematic representation of the digital import of pathology data. Structured
‘synoptic’ reports facilitated digital recognition of relevant pathology fields. (A)
Demographics data was used to link reports to individual patients in the database and
(B) individual data were then extracted from the report and directed to populate relevant
fields in the main database.
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Analysis of Error in Manual Data Entry

The digitally imported data were placed parallel to any existing manual entry records
and following institutional review board approval, we were able to directly compare
between digitally imported data and manual entry data for 752 patients where records
from the two data entry methods co-existed. We assumed that any mismatch in the
fields within the manual entry and digital import was due to human error in the data
entry, as data were copied from printed versions of these same reports in the first
instance. The importing software had been extensively tested and errors would be
systematic within each field rather than transcriptional in nature. We excluded from
analysis specimen pathology fields with fewer than 200 comparable entries in order to
detect at least a 0.5% error rate. 421 patients had at least 10 completed pathology fields
in both manual entry and electronic import records and were thus selected for study.
This would allow us to detect the error rate across a patient’s fields and also minimise
individual patient factors in explaining error rates in different fields. Within each
pathology field, we linked records based on unique identifiers and electronically
compared them using custom prepared software (Visual Basic, Microsoft Visual Studio
2010). We identified and counted any mismatches and then compared across all fields
for each patient to determine the number of patients affected by one or more errors

across the cohort (Fig. 2).
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entry was excluded. We identified a total of 971 cases where both pathological stage
and extraprostatic extension fields had both been successfully imported from the
synoptic pathology reports (Table I). Once again using Visual Basic, we generated a
report indicating cases where there was mismatch between pathological stage and
extraprostatic extension status. The original cases in which these mismatches occurred

were all reviewed by a pathologist to confirm the presence of error in the source

material.

Table I

Pathological Stage Number
T2a 131

T2b 4

T2c 543

T3a 225

T3b 68

T4 0

Extraprostatic Extension

Absent 670
Present 302

Total Cases for Comparison 971

Statistical Analysis

Percentage error rates were calculated by dividing the absolute number of errors by the
total number of data points examined overall and in each field. Binomial distribution
was used to calculate 95% confidence intervals for these rates, and Fisher’s Exact Test
applied to 2x2 contingency tables where necessary (PASW Statistics 18.0; IBM,
Chicago, Illinois, 2010). All statistical tests were two-tailed and significance was

assumed at 0<0.05.
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RESULTS

Of the 421 patients selected for this part of the study, 320 had completely concordant
data between manual entry and electronic import methods in a median of 12 pathology
fields (range 10-13), indicating an outright accuracy in 76% of all patients. Seventy one
patients (16.8%) had errors in one field only, whilst 18 (4.3%) had two or more

incorrect fields, and 12 (2.9%) had 3-5 errors.

Analysis of error rate in each individual pathology field yielded rates of error ranging
from 0.5-6.4%. Across all fields, the error rate was 2.8% (Table II). Assuming that
errors in different fields occurred independently of one another, that the fraction of
records where at least one error occurred would be given by 1-(1-p)”, where p is the
overall error rate and # is the number of fields. In this case, 1-(1-0.028)'* = 31%. Since
the proportion of records where error occurred was 24%, the errors appear not to occur

independently across the fields.

Fields involving descriptive parameters appeared more error-prone than those with
direct measurements or involving numerical figures, so we grouped the fields based on
data format. Of the 2658 data points involving numbers (numeric and alphanumeric), 30
(1.1%, 95% CI 0.78-1.6) were erroneous, compared with 116 (4.7%, 95% CI 3.9-5.6) of
the 2490 data points with text (p<0.0001). The five fields that required an element of
interpretation in data entry also appeared more error-prone and again, when data was
pooled, their difference in error rates compared with fields allowing for direct

transcription was significantly greater (5.2% vs 1.3%, p<0.0001).
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Table 11
Pathology Field Variable Data Format Total Data Error  Error Rate

Type Points (%) 95% CI)
Gleason 1 Categorical Numeric 415 2 0.5% (0.06-1.7)
Gleason 2 Categorical Numeric 415 3 0.7% (0.15-2.1)
Gleason score Categorical Numeric 415 1 0.2% (0.01-1.3)
Extraprostatic Extension” Binary Text 421 21 5.0% (3.1-7.5)
Stage Categorical ~ Alphanumeric 421 13 3.1% (1.7-5.2)
Focality Binary Text 421 9 2.1% (1.0-4.0)
Perineural Invasion” Categorical Text 421 27 6.4% (4.3-9.2)
Lymphovascular Categorical Text
Invasion’ 421 27 6.4% (4.3-9.2)
Prostatic Intraepithelial Categorical Text
Neoplasia” 420 27 6.4% (4.3-9.2)
Margins’ Binary Text 386 5 1.3% (0.42-3.0)
Tumour Volume Continuous Numeric 310 4 1.3% (0.35-3.3)
Prostate Dimensions” Continuous Numeric 272 2 0.7% (0.09-2.6)
Prostate Weight Continuous Numeric 410 5 1.2% (0.40-2.8)
All Fields 5148 146 2.8% (2.4-3.3)

* Data required some interpretation on data entry — these were coded numerically
+Each data point was a combination of 3 numbers. Error never occurred in more than one dimension.

In the 971 cases used for the analysis of source data error, six cases were staged T2 but
in fact were positive for extraprostatic extension (6 of 672, 0.9%). On pathologist
review, these cases had indeed been understaged. One case of a T3 prostate cancer
erroneously stated on the synoptic report that extraprostatic extension was not identified
(Table III). This was the sole inconsistency between the original prose pathology report
and its accompanying synoptic report (1 of 971, 0.1%). Although only two variables

have been analysed, these figures suggest a very low rate of baseline error inherent in

the pathology reports.

Table I11

Pathological Stage Matches Mismatches Error Rate % (95% CI)
T2 672 6 0.9% (0.33-1.9)
T3 292 1 0.3% (0.01-1.9)
Total 964 7 0.7% (0.30-1.5)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



Page 15 of 47

©CoO~NOUTA,WNPE

BMJ Open

15

DISCUSSION

In a large contemporary radical prostatectomy dataset we have examined pathology data
in a subset of over 400 patients and found the overall error rate due to manual data entry
to be 2.8% across all fields. Individual fields were found to vary in error rates between
0.5% and 6.4%, and those involving descriptive text or requiring an element of
interpretation appeared more vulnerable to error. Almost a quarter of patients had at
least one data error when all pathology fields were considered, as might occur when
multivariable statistical analysis is undertaken. We have also examined the source data
electronically without human influence and established a baseline error rate of less than

1%.

The strengths of our study include a combination of factors that enable a realistic
representation of a small to moderate sized oncology database used for research
purposes. As the data was stored in a simple spreadsheet, not collected for clinical use
and was sourced from primary clinical documents, this context of data entry represents a
common scenario predating modern informatics solutions. We also examined a distinct
set of data fields with varying formats important to clinical oncological research.
Together, these increase the relevance of our findings to cancer datasets in general, and
in particular to data which has provenance in times prior to the introduction of more
sophisticated modes of data entry. In addition, we have checked the integrity of one
aspect of our source data, which is of importance in both clinical and academic settings.
This helps to set a lower limit to the general error rate that can be achieved with

interventions for data integrity imposed beyond initial pathology reporting.
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Our study was limited by its use of a single spreadsheet from a single series of patients.
Although different institutions may use different data systems, the maintenance of
clinical datasets on such spreadsheets is common in the clinical environment. Our
source data was in the form of synoptic reports designed for ease of data transcription,
rather than traditional pathology reports in prose and this may have reduced the true
error rate of such data. Other major limitations were in the study design, whereby we
could not differentiate easily between different types of data entry error despite being
able to infer this to some extent from the format of data. Due to the nature of
spreadsheets, we could not definitely account for row or column shifts in blocks of data
as a source of error, although, on visual inspection of the errors this did not seem to be
the case. As we only examined pathology fields covered by electronic import, the
findings were not representative of the entire dataset, which also includes operative and
perioperative details, and thus the study was not designed to test the effect that these
other factors may have had on error nor was it designed to detect errors in these
important areas. A final limitation was that the size of error in fields containing
continuous data was not measured as we only identified mismatches in the datasets, and

this is required to assess more fully any impact of error in those fields.

Studies of error in clinical datasets are scarce, owing in part to the time and resources
required to conduct these audits. Our overall error rate in manually entered data appears
similar to that of previous studies. In one study occurring over 10 years, Zellner et al
reported an estimated probability of error in two systems at about 2.4% and the
estimated error frequency in a database alone was 2.7%". In this case, less than 10% of

the overall dataset was examined using random sampling. Arndt et al performed a
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detailed study of observer rating scores in a multicentre field setting'', whilst Goldberg
et al examined several clinical research databases, with errors ranging from 2.3% to
26.9% detected by the double-entry method in fields relating to timepoints of disease
and tumour recurrence status’. In general, these studies have involved more
sophisticated data entry interfaces that allowed more detailed analysis of the underlying

aetiology of data errors.

In contrast, our study has directly examined most fields in the subset of pathology
variables, of particular importance in oncology research, and removed the effects of
manual transfer of data in the generation of the comparison dataset. We also analysed
error in the source data, as they might exceed those of data entry and render attempts to
decrease downstream error frequency less meaningful. In this case the rate of 0.9% in
mismatch between stage and extraprostatic extension was reassuringly lower than the
overall manual entry dataset error frequency, and was also lower than the generally

cited rate of 1.4% error for prostate pathology16.

Although an analysis of the impact of data errors on outcomes was an area our study
was unable to address, as follow up times were too short in our dataset for meaningful
results, others have demonstrated the variable effects that erroneous data might have on
outcomes such as rates of tumour recurrence and mortality rates’ *. While it is likely that
a low rate of data error will have little effect in univariable analysis, studies involving
many fields and demonstrating a small effect size with borderline significance levels are
intuitively liable to the effect of errors. In these cases, and particularly where accuracy

across a large feature space is essential such as in translational genomics research, it is
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preferable that data errors are accounted for. Some investigators have developed
corrective statistical tools to be used with a specified error rate in source databases in a
particular circumstance®, but such tools are unlikely to become widely applicable
without more reporting of error rates within different types of datasets and analyses of

outcome differences.

The greatest influence on error rates in our own clinical dataset was the transition to
electronic data feeds from clinical sources and the application of software to
retrospectively replace manually entered data. In doing so, we decreased the portion of
patients with manually entered data from 58% (853/1471) to 9% (128/1471), although
for various technical reasons many fields still remain manually inputted amongst the
earlier patients. With advances in technology, it may even be possible to extract data
from even earlier pathology reports, since all reports are typewritten, and maintain a
dataset with virtually no manually entered pathology data. Where such manually entered
data is unavoidable or forms part of a larger dataset, due acknowledgement of the
provenance of data from different parts of that dataset by performing separate analysis
or by employing sensitivity analysis might be considered in research. In addition, the

judicious selection of pathology fields based on liability to error might be used.

The recognition that direct use of clinically attained data leads to better accuracy is not
new. The need to re-key data between clinical sources and database interfaces has long
been acknowledged to be a significant source of human error'’, and the removal of this
aspect of data entry would presumably increase accuracy of clinical datasets overall. In

recent times, the availability of data directly collected in the clinical setting for other
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healthcare activities including medical research has increased. One clinical group in a
peripheral hospital centralised data collection for audit and research purposes via web-
browser based application software and extensively integrated the system in daily use.
In just 12 months, their unit amassed over 3000 near complete patient records and
reported enhanced accuracy due to the demonstration of the immediate clinical value of
high-quality data capture to the users'®. Such integrated record systems have been
shown to have additional clinical benefits'®, whilst data collected as near in time and
space as possible to the point of care is known to improve overall accuracy™. Indeed,
pathologists currently generate pathology reports prospectively as part of the clinical
process, and our use of electronic data feeds from our service provider is an example of
how clinical data can be directly captured for clinical or research use without the need

for manual data entry.

With increasing drive for the widespread implementation of electronic health records?',
comes the opportunity for more electronic data feeds into data repositories from health
services such as those used in the present study, and this effectively diminishes the
reliance on manual data entry. However, as our study demonstrated, even a clinical data
source itself has a pervasive error rate, and there will remain a need for active error
trapping. Furthermore, retrospective replacement of manually entered data may afford
opportunities to examine the errors in manually entered data. Perhaps this work would
allow the development of tools to adequately account for errors in early datasets that no

technology can correct.
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CONCLUSION

We have evaluated a large radical prostatectomy dataset and while the overall rate of
error was low, individual pathology fields were variably prone to error. We have
demonstrated the feasibility of checking source clinical data for error, and the
possibility of attaining high quality data using electronic data feeds for both prospective
and retrospective parts of our data repository. We found that numerical data or data with
fixed field entry provides better quality concordance between manual and electronic

data-entry.
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ABSTRACT

Objective: Data errors are a well-documented part of clinical datasets as is their
potential to confound downstream analysis. In this study we explore the reliability of
manually transcribed data across different pathology fields in a prostate cancer database

and also measure error rates attributable to the source data.

Design: Descriptive study

Setting: Specialist urology service at a single centre in metropolitan Victoria in

Australia

Participants: Between 2004 and 2011, 1471 patients underwent radical prostatectomy
at our institution. In a large proportion of these cases, clinicopathological variables were
recorded by manual data-entry. In 2011, we obtained electronic versions of the same
printed pathology reports for our cohort. The data were electronically imported in

parallel to any existing manual entry record enabling direct comparison between them.

Outcome measures: Error rates of manually entered data compared with electronically

imported data across clinicopathological fields.

Results: 421 patients had at least 10 comparable pathology fields between the electronic

import and manual records and were selected for study. 320 patients had concordant

data between manually entered and electronically populated fields in a median of 12
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pathology fields (range 10-13), indicating an outright accuracy in manually entered
pathology data in 76% of patients. Across all fields, the error rate was 2.8% whilst
individual field error ranges from 0.5-6.4%. Fields in text formats were significantly
more error-prone than those with direct measurements or involving numerical figures
(p<0.001). 971 cases were available for review of error within the source data, with

figures of 0.1%-0.9%.

Conclusion: While the overall rate of error was low in manually entered data,
individual pathology fields were variably prone to error. High quality pathology data
can be obtained for both prospective and retrospective parts of our data repository and

the electronic checking of source pathology data for error is feasible.
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BACKGROUND AND SIGNIFICANCE

The majority of clinical research publications are based on the analysis of prospectively
collected, clinical databases. In addition, patient centred databases are increasingly
important in translational research efforts, as appropriately annotated tissue banks are
the foundation for global multi-institutional collaborative efforts in genetic and
epigenetic screening of various diseases'. Yet despite the stringent quality controls
placed on the vast amounts of research data derived from these studies and the acute
awareness of the need to control data quality”>, the inherent accuracy of original clinical

datasets is one area that receives relatively little attention.

Data errors are common in clinical datasets*™®, with some cancer databases recording
error rates as high as almost 27% in some fields ’. Such errors have the potential to
adversely affect data analysis and interpretation, and can lead to erroneous conclusions®.
Methods to first identify then correct errors in these datasets would be immensely

valuable in the setting of the large-scale genomics projects being performed.

Two types of errors are described in the literature: one of omission, and one of
erroneous value. Although it is sometimes argued that missing values carry greater
impact due to their greater prevalence’, which may be up to 55% in cancer surgery
databases'®, these errors are more easily detected with judicious computer queries and
corrected with retrospective data collection. On the contrary, once erroneous values
permeate a dataset, their effects can cascade in unpredictable ways. Errors in high
impact fields have been shown to adversely affect the interpretation of statistical

analyses, even if the errors are at low prevalence''. Whilst it is well known that
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structured data entry improves the accuracy of manual documentation'?, much of the
clinical data of high value to researchers predates any effective informatics solutions
aimed at data quality that might exist today. Instead, manual retrospective transcription
of data from clinical records into relatively unstructured spreadsheets constitutes the
data entry method for many clinical audits that subsequently serve research purposes.
These datasets may have even transitioned to more carefully constructed data entry
interfaces, as might occur in conditions such as prostate cancer where long follow up
times of over ten years are necessary for study of oncological outcomes'?. In such cases,
the provenance of the data collected with earlier means may not be accounted for with

subsequent analysis.

Studies involving large cancer datasets rarely report error rates or their management,
and it is difficult to assess the impact that these may have on the outcomes reportedM.
Given the considerable effort that generally goes towards the collection of data for a
large clinical database, it is unsurprising that surplus resources are usually unavailable
to place towards the check of data accuracy. Although larger numbers in databases may
be used to counter the problem of errors, the combination of datasets, particularly with

different fields would serve only to magnify error rates.

Knowledge of errors in manually collected data could give insight into how these may
be accounted for in subsequent analysis. In cancer databases, pathology data are of
particular importance as they are relied upon to build cohorts of clinical relevance in
research. Often there are multiple fields that give equivalent indications of underlying

biology and any one could be analysed to similar effect. For example, both the
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percentage involvement of tumour or its measured size may serve as parameters of
cancer burden. It is unlikely that different types of data would have equivalent
vulnerability to error, and knowledge of the fields or types of fields that might be more
error-prone with manual data entry could help researchers judiciously select fields for
analysis based on greater accuracy. It might also aid informaticians to focus on error
prevention in fields that carry particular importance in clinical and research settings. In
addition, it is important to measure the baseline level of error inherent within the
pathology reports themselves, the data source, as no degree of accuracy in manual
transcription or even automated processes can result in a lower error rate without

amendment of the original report.

In this article we explored the reliability of manually transcribed pathology data across
different fields in a large contemporary prostate cancer database. Initially housed as a
Microsoft Excel spreadsheet, the database has evolved to become server based with a
web-based interface. We have established automated electronic datafeeds from our
pathology service provider to reduce the manual human data entry component in the
pathology data, and we have used these to prospectively and retrospectively populate
data fields. We compared overlapping data from the electronic feeds and previously
manually entered data, whereby we could gauge the accuracy of pathology details in a
subset of our patients. In this way, we could determine the error involved in manual data
entry in different fields across patients with relative ease. In addition, we explored error

that might be attributable to the source data.
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PATIENT AND METHODS

Database Systems and Data Linking

Between 2004 and 2011, 1471 patients underwent radical prostatectomy across our
institutions. Variables including demographics, pre-operative PSA, pathological
Gleason score and stage, and other pathological data relating to the prostatectomy
specimens were manually entered in a non-relational database (Microsoft Excel
spreadsheet) for the first 853 of these cases with 57 fields per patient (2004-2008).
Although most data collection was primarily prospectively performed, pathology data
was obtained retrospectively once printed specimen pathology reports became available,
or missing data was found on later review. For every patient, printed pathology reports
were consulted and data manually transcribed into the spreadsheet. Each of the reports
were issued by a single pathology group and consisted of one to two pages of prose.
Since 2006, the reports have been accompanied by a separate page with a 'synoptic'
report. This synoptic report contained the pathology data in a structured format with
fields of interest listed on a single page enabling greater ease of interpretation over the

traditional reports in prose. Manual data entry was performed by four surgical residents

with knowledge of prostate cancer pathology and versed in the relevant terminology.

threughout: In 2010 our institution moved all data to Caisis 5.0, a web-based relational
database system developed at the Memorial Sloan Kettering Cancer Centre in New

York, and ceased manual recording of pathology data from hardcopy reports.

We subsequently established a data link between our database and the pathology group

whereby electronically encrypted reports were provided in HL7 standard v2.31 format,
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a health industry information technology standard. The reports were retrieved using
client/server software through a TCP/IP link. Custom software was developed in Visual

Basic (Microsoft Visual Studio 2010) that enabled us to parse text or values of interest
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Fig. 1 Schematic representation of the digital import of pathology data. Structured
‘synoptic’ reports facilitated digital recognition of relevant pathology fields. (A)
Demographics data was used to link reports to individual patients in the database and
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(B) individual data were then extracted from the report and directed to populate relevant
fields in the main database.

Analysis of Error in Manual Data Entry

The digitally imported data were placed parallel to any existing manual entry records
and following institutional review board approval, we were able to directly compare
between digitally imported data and manual entry data for 752 patients where records
from the two data entry methods co-existed. We assumed that any mismatch in the
fields within the manual entry and digital import was due to human error in the data
entry, as data were copied from printed versions of these same reports in the first
instance. The importing software had been extensively tested and errors would be
systematic within each field rather than transcriptional in nature. We excluded from
analysis specimen pathology fields with fewer than 200 comparable entries in order to
detect at least a 0.5% error rate. 421 patients had at least 10 completed pathology fields
in both manual entry and electronic import records and were thus selected for study.
This would allow us to detect the error rate across a patient’s fields and also minimise
individual patient factors in explaining error rates in different fields. Within each
pathology field, we linked records based on unique identifiers and electronically
compared them using custom prepared software (Visual Basic, Microsoft Visual Studio
2010). We identified and counted any mismatches and then compared across all fields
for each patient to determine the number of patients affected by one or more errors

across the cohort (Fig. 2).
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38 In order to gain insight into the error inherent within the original pathology reports from
39
22 which we sourced data, we measured the concordance between pathological stage and
42 . . .
43 one of the descriptors that lead to stage determination, namely the extraprostatic
44
45 extension variable. An error was detected in cases of incongruity where extraprostatic
46
47 extension was present but the staging was T2, or extraprostatic extension was absent but
48
gg the staging was T3. We identified and excluded the small number of cases of stage T3b
22 disease where seminal vesicle invasion was apparent but extraprostatic extension not
53
54 definite, as this would not be considered an error. We examined only the electronically
55
56 imported data read directly from the synoptic reports, so that the effect of manual data
57
58
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entry was excluded. We identified a total of 971 cases where both pathological stage
and extraprostatic extension fields had both been successfully imported from the
synoptic pathology reports (Table I). Once again using Visual Basic, we generated a
report indicating cases where there was mismatch between pathological stage and
extraprostatic extension status. The original cases in which these mismatches occurred

were all reviewed by a pathologist to confirm the presence of error in the source

material.

Table I

Pathological Stage Number
T2a 131

T2b 4

T2c 543

T3a 225

T3b 68

T4 0

Extraprostatic Extension

Absent 670
Present 302

Total Cases for Comparison 971

Statistical Analysis

Percentage error rates were calculated by dividing the absolute number of errors by the
total number of data points examined overall and in each field. Binomial distribution
was used to calculate 95% confidence intervals for these rates, and Fisher’s Exact Test
applied to 2x2 contingency tables where necessary (PASW Statistics 18.0; IBM,
Chicago, Illinois, 2010). All statistical tests were two-tailed and significance was

assumed at 0<0.05.
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RESULTS

Of the 421 patients selected for this part of the study, 320 had completely concordant
data between manual entry and electronic import methods in a median of 12 pathology
fields (range 10-13), indicating an outright accuracy in 76% of all patients. Seventy one
patients (16.8%) had errors in one field only, whilst 18 (4.3%) had two or more

incorrect fields, and 12 (2.9%) had 3-5 errors.

Analysis of error rate in each individual pathology field yielded rates of error ranging
from 0.5-6.4%. Across all fields, the error rate was 2.8% (Table II). Assuming that
errors in different fields occurred independently of one another, that the fraction of
records where at least one error occurred would be given by 1-(1-p)”, where p is the
overall error rate and # is the number of fields. In this case, 1-(1-0.028)'* = 31%. Since
the proportion of records where error occurred was 24%, the errors appear not to occur

independently across the fields.

Fields involving descriptive parameters appeared more error-prone than those with
direct measurements or involving numerical figures, so we grouped the fields based on
data format. Of the 2658 data points involving numbers (numeric and alphanumeric), 30
(1.1%, 95% CI 0.78-1.6) were erroneous, compared with 116 (4.7%, 95% CI 3.9-5.6) of
the 2490 data points with text (p<0.0001). The five fields that required an element of
interpretation in data entry also appeared more error-prone and again, when data was
pooled, their difference in error rates compared with fields allowing for direct

transcription was significantly greater (5.2% vs 1.3%, p<0.0001).
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Table 11
Pathology Field Variable Data Format Total Data Error  Error Rate

Type Points (%) 95% CI)
Gleason 1 Categorical Numeric 415 2 0.5% (0.06-1.7)
Gleason 2 Categorical Numeric 415 3 0.7% (0.15-2.1)
Gleason score Categorical Numeric 415 1 0.2% (0.01-1.3)
Extraprostatic Extension” Binary Text 421 21 5.0% (3.1-7.5)
Stage Categorical ~ Alphanumeric 421 13 3.1% (1.7-5.2)
Focality Binary Text 421 9 2.1% (1.0-4.0)
Perineural Invasion” Categorical Text 421 27 6.4% (4.3-9.2)
Lymphovascular Categorical Text
Invasion’ 421 27 6.4% (4.3-9.2)
Prostatic Intraepithelial Categorical Text
Neoplasia” 420 27 6.4% (4.3-9.2)
Margins’ Binary Text 386 5 1.3% (0.42-3.0)
Tumour Volume Continuous Numeric 310 4 1.3% (0.35-3.3)
Prostate Dimensions” Continuous Numeric 272 2 0.7% (0.09-2.6)
Prostate Weight Continuous Numeric 410 5 1.2% (0.40-2.8)
All Fields 5148 146 2.8% (2.4-3.3)

* Data required some interpretation on data entry — these were coded numerically
+Each data point was a combination of 3 numbers. Error never occurred in more than one dimension.

In the 971 cases used for the analysis of source data error, six cases were staged T2 but
in fact were positive for extraprostatic extension (6 of 672, 0.9%). On pathologist
review, these cases had indeed been understaged. One case of a T3 prostate cancer
erroneously stated on the synoptic report that extraprostatic extension was not identified
(Table III). This was the sole inconsistency between the original prose pathology report
and its accompanying synoptic report (1 of 971, 0.1%). Although only two variables

have been analysed, these figures suggest a very low rate of baseline error inherent in

the pathology reports.

Table I11

Pathological Stage Matches Mismatches Error Rate % (95% CI)
T2 672 6 0.9% (0.33-1.9)
T3 292 1 0.3% (0.01-1.9)
Total 964 7 0.7% (0.30-1.5)
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DISCUSSION

In a large contemporary radical prostatectomy dataset we have examined pathology data
in a subset of over 400 patients and found the overall error rate due to manual data entry
to be 2.8% across all fields. Individual fields were found to vary in error rates between
0.5% and 6.4%, and those involving descriptive text or requiring an element of
interpretation appeared more vulnerable to error. Almost a quarter of patients had at
least one data error when all pathology fields were considered, as might occur when
multivariable statistical analysis is undertaken. We have also examined the source data
electronically without human influence and established a baseline error rate of less than

1%.

The strengths of our study include a combination of factors that enable a realistic
representation of a small to moderate sized oncology database used for research
purposes. As the data was stored in a simple spreadsheet, not collected for clinical use
and was sourced from primary clinical documents, this context of data entry represents a
common scenario predating modern informatics solutions. We also examined a distinct
set of data fields with varying formats important to clinical oncological research.
Together, these increase the relevance of our findings to cancer datasets in general, and
in particular to data which has provenance in times prior to the introduction of more
sophisticated modes of data entry. In addition, we have checked the integrity of one
aspect of our source data, which is of importance in both clinical and academic settings.
This helps to set a lower limit to the general error rate that can be achieved with

interventions for data integrity imposed beyond initial pathology reporting.
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Our study was limited by its use of a single spreadsheet from a single series of patients.
Although different institutions may use different data systems, the maintenance of
clinical datasets on such spreadsheets is common in the clinical environment. Our
source data was in the form of synoptic reports designed for ease of data transcription,
rather than traditional pathology reports in prose and this may have reduced the true
error rate of such data. Other major limitations were in the study design, whereby we
could not differentiate easily between different types of data entry error despite being
able to infer this to some extent from the format of data. Due to the nature of
spreadsheets, we could not definitely account for row or column shifts in blocks of data
as a source of error, although, on visual inspection of the errors this did not seem to be
the case. As we only examined pathology fields covered by electronic import, the
findings were not representative of the entire dataset, which also includes operative and
perioperative details, and thus the study was not designed to test the effect that these
other factors may have had on error nor was it designed to detect errors in these
important areas. A final limitation was that the size of error in fields containing
continuous data was not measured as we only identified mismatches in the datasets, and

this is required to assess more fully any impact of error in those fields.

Studies of error in clinical datasets are scarce, owing in part to the time and resources
required to conduct these audits. Our overall error rate in manually entered data appears
similar to that of previous studies. In one study occurring over 10 years, Zellner et al
reported an estimated probability of error in two systems at about 2.4% and the
estimated error frequency in a database alone was 2.7%". In this case, less than 10% of

the overall dataset was examined using random sampling. Arndt et al performed a
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detailed study of observer rating scores in a multicentre field setting'', whilst Goldberg
et al examined several clinical research databases, with errors ranging from 2.3% to
26.9% detected by the double-entry method in fields relating to timepoints of disease
and tumour recurrence status’. In general, these studies have involved more
sophisticated data entry interfaces that allowed more detailed analysis of the underlying

aetiology of data errors.

In contrast, our study has directly examined most fields in the subset of pathology
variables, of particular importance in oncology research, and removed the effects of
manual transfer of data in the generation of the comparison dataset. We also analysed
error in the source data, as they might exceed those of data entry and render attempts to
decrease downstream error frequency less meaningful. In this case the rate of 0.9% in
mismatch between stage and extraprostatic extension was reassuringly lower than the
overall manual entry dataset error frequency, and was also lower than the generally

cited rate of 1.4% error for prostate pathology16.

Although an analysis of the impact of data errors on outcomes was an area our study
was unable to address, as follow up times were too short in our dataset for meaningful
results, others have demonstrated the variable effects that erroneous data might have on
outcomes such as rates of tumour recurrence and mortality rates’ *. While it is likely that
a low rate of data error will have little effect in univariable analysis, studies involving
many fields and demonstrating a small effect size with borderline significance levels are
intuitively liable to the effect of errors. In these cases, and particularly where accuracy

across a large feature space is essential such as in translational genomics research, it is
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preferable that data errors are accounted for. Some investigators have developed
corrective statistical tools to be used with a specified error rate in source databases in a
particular circumstance®, but such tools are unlikely to become widely applicable
without more reporting of error rates within different types of datasets and analyses of

outcome differences.

The greatest influence on error rates in our own clinical dataset was the transition to
electronic data feeds from clinical sources and the application of software to
retrospectively replace manually entered data. In doing so, we decreased the portion of
patients with manually entered data from 58% (853/1471) to 9% (128/1471), although
for various technical reasons many fields still remain manually inputted amongst the
earlier patients. With advances in technology, it may even be possible to extract data
from even earlier pathology reports, since all reports are typewritten, and maintain a
dataset with virtually no manually entered pathology data. Where such manually entered
data is unavoidable or forms part of a larger dataset, due acknowledgement of the
provenance of data from different parts of that dataset by performing separate analysis
or by employing sensitivity analysis might be considered in research. In addition, the

judicious selection of pathology fields based on liability to error might be used.

The recognition that direct use of clinically attained data leads to better accuracy is not
new. The need to re-key data between clinical sources and database interfaces has long
been acknowledged to be a significant source of human error'’, and the removal of this
aspect of data entry would presumably increase accuracy of clinical datasets overall. In

recent times, the availability of data directly collected in the clinical setting for other
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healthcare activities including medical research has increased. One clinical group in a
peripheral hospital centralised data collection for audit and research purposes via web-
browser based application software and extensively integrated the system in daily use.
In just 12 months, their unit amassed over 3000 near complete patient records and
reported enhanced accuracy due to the demonstration of the immediate clinical value of
high-quality data capture to the users'®. Such integrated record systems have been
shown to have additional clinical benefits'®, whilst data collected as near in time and
space as possible to the point of care is known to improve overall accuracy™. Indeed,
pathologists currently generate pathology reports prospectively as part of the clinical
process, and our use of electronic data feeds from our service provider is an example of
how clinical data can be directly captured for clinical or research use without the need

for manual data entry.

With increasing drive for the widespread implementation of electronic health records?',
comes the opportunity for more electronic data feeds into data repositories from health
services such as those used in the present study, and this effectively diminishes the
reliance on manual data entry. However, as our study demonstrated, even a clinical data
source itself has a pervasive error rate, and there will remain a need for active error
trapping. Furthermore, retrospective replacement of manually entered data may afford
opportunities to examine the errors in manually entered data. Perhaps this work would
allow the development of tools to adequately account for errors in early datasets that no

technology can correct.

CONCLUSION
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We have evaluated a large radical prostatectomy dataset and while the overall rate of
error was low, individual pathology fields were variably prone to error. We have
demonstrated the feasibility of checking source clinical data for error, and the
possibility of attaining high quality data using electronic data feeds for both prospective

and retrospective parts of our data repository. We found that numerical data or data with

fixed field entry provides better quality concordance between manual and electronic

data-entry.
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Article Summary

Article focus

e Although use of structured electronic databases is widespread, a substantial amount
of clinical data used in research predates this.

e There is a paucity of literature on error rates in such clinical datasets used in
research.

e We explored the reliability of manually transcribed data across different pathology
fields in a prostate cancer database and also measured error rates attributable to the

source data.

Key messages
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e  Whilst overall rate of error for manually entered data can be low, individual fields
may be variably prone to error, especially those involving descriptive text or
requiring an element of interpretation.

e Computerised systems can be used to check clinical source data for error.

o The use of electronic data feeds retrospectively can replace manually collected data

fields in some cases to improve overall accuracy.

Strengths and limitations of this study

e Qur study design provides a realistic representation of a small to moderate sized
oncology database used for research purposes.

o  We checked the integrity of one aspect of our source data.

e QOur study was limited by its use of a single spreadsheet from a single series of
patients.

e As we only examined pathology fields covered by electronic import, the findings

were not representative of the entire dataset.
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Fig. 1 Schematic representation of the digital import of pathology data. Structured ‘synoptic’ reports
facilitated digital recognition of relevant pathology fields. (A) Demographics data was used to link reports to
individual patients in the database and (B) individual data were then extracted from the report and directed

to populate relevant fields in the main database.
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38 Fig. 2 Schematic representation of the comparison of a dataset imported digitally and in parallel to a

39 manually entered dataset. (A) Records were linked using unique patient identifiers, and (B) pathology fields

40 were individually compared. Concordant data were flagged for merging in order to eliminate duplicate data

(C) Mismatches were used to identify errors in the manual entry dataset. (D) We compared across all

41 pathology fields for individual patients.
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